
A Post-Quantum One Time Signature
Using Bloom Filter

Masoumeh Shafieinejad, Reihaneh Safavi-Naini
University of Calgary, Calgary, Canada

Abstract—Today’s commonly used digital signatures will
not be secure if a quantum computer exists. One time
signatures (OTS) base security on the one way property of
hash functions and will stay secure against an adversary
with access to a quantum computer. These schemes however
suffer from large public and private keys, as well as large
signature size. We propose an OTS that uses Bloom filters
to enhance the efficiency without sacrificing security, and
show the required sizes of public/private keys, as well as
the signature size will all reduce for the same security level.
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I. INTRODUCTION

Digital signatures are one of the most widely used
cryptographic primitive in electronic communication,
and are used in commonly used secure protocols such
as SSL(Secure Socket Layer) and TLS(Transport Layer
Security). Security of widely use signatures including
RSA[9], DSA[2], and ECDSA[4] rely on the hardness of
factoring and discrete logarithm problems. Shor [11] pro-
posed a polynomial time quantum algorithm for solving
both problems, rendering all these signature schemes in-
secure. Two main categories of post-quantum signatures
are those that rely on computational assumptions that do
not have an efficient quantum algorithm, and One-time
signature(OTS) schemes[1,7,8]. Example of assumptions
in the former categories, are lattice-based and code-based
assumptions[3,13,12]. In this paper we consider OTS
schemes. These schemes are constructed from general
one-way functions can be efficiently computed but hard
to find a preimage for an element in the range of the
function. A cryptographic hash function is considered
as a good representation of one-way hash function. One
attractive property of OTS is their flexibility in replacing
the one-way function (hash function) with a new one
if the older function become insecure. OTS scheme
was first introduced by Lamport[7] and require large
signature length as well as large secret and public key
sizes. To enhance efficiency two important approaches
are (i) proposed by Bos and Chaum[1] who used cover-
free families to reduce the signature size and the number
of required keys, and (ii) introduced by Winternitz[8]
providing time and space trade-off. In this paper, follow
the former approach and show to further reduce the key

size by using Bloom filters. A Bloom filter[10] is a
compact probabilistic data structure that represents a set
of elements, and supports set membership queries. These
structures have been widely used in distributed systems.
We show that by using Bloom filters the public and
private key and signature sizes of a cove-free based OTS
can be substantially reduced. This poster is organized
as follows. Section II gives an overview of OTS and
relevant building blocks of the scheme, namely cover
free families and Bloom filters. Section III describes our
OTS signature scheme and provides security proof for it.
Section IV evaluates time and space complexity of our
scheme and compares it with other schemes for concrete
parameters.

II. PRELIMINARIES

We introduce the building blocks for the proposed
signature scheme. One time signature(OTS), introduced
by Lamport[7] is the main building block of our work.
OTS is enhanced by using cover free families by Bos and
Chaum[1]. Cover free families enable us to sign more
messages than the original one time signature would
allow. The third block is Bloom filter[10], applying
which improves efficiency of the OTS.

A. One Time Signature

Lamport introduced the first OTS scheme[7]. The
scheme proceeds as follows to sign a 1-bit message b.
Two secrets, x0, x1, are chosen randomly as signing
keys, and their corresponding images, computed under
the one way function f , y0 = f(x0) and y1 = f(x1),
form the public verification keys. The signature for
message b is then xb. Any party can verify the signature
by evaluating f on xb and comparing the result with
yb in the public verification key. The scheme is secure,
fast and simple; however, it requires long signatures and
twice secret/public keys as the message length in bits.

B. 1-Cover-Free Families

Cover-free families first used implicitly by Bos and
Chaum[1] are described as follows. An n-uniform 1-
cover-free family, 1-CFF(E,B), indicates a finite set of E
elements and a collection(B) of subsets of size n. Any
two distinct subsets in B differ on at least one element.



1-CFF in OTS: To use an optimal n−uniform 1-
CFF(E,B) for signing an l−bit message M , the param-
eters E and n are chosen such that:

(
E
n

)
≥ 2l. The 1-

CFF provides a set of E secret keys(public keys are
evaluations of the one way function on these secrets) and
a collection, B, of subsets of size“n”. We assume there is
a bijection that maps a message 0 ≤ M ≤

(
E
n

)
into the

M th subset in B denoted by BM . To sign a message M ,
the secret keys in BM are revealed. To verify a signature,
verifier evaluates the one way function on the revealed
secrets and compares them with the public keys.

C. Bloom Filter

Bloom filter[10] is a data structure, a binary array of
size m, used for storing elements of a set. The array is
filled with 0’s first. To store a set as {x1, x2, x3}, each
element is mapped to (using hash function as H1, H2, H3

mod m) k positions in the bloom filter. The bits in the
bloom filter which are in the positions corresponding to
hash outputs are then switched to 1, as shown in figure 1.
We associate this mapping procedure with the function
BF store. BF store takes an element of the set, applies
k hash functions separately on the element, and stores it
in the Bloom filter. The BF check function on the other
hand, is used to query for an element (test whether it is
in the set). BF check feeds the query to each of the k
hash functions to get k array positions. If any of the bits
at these positions is 0, the BF check outputs 0. If all the
bits would have been set to 1, the function outputs 1.

Figure 1. Bloom Filter of size 32 storing 3 elements [10]

H1(x1)||H2(x1)||H3(x1) = 01000010000000100000000000000000

H1(x2)||H2(x2)||H3(x2) = 00000010000000000100001000000000

H1(x3)||H2(x3)||H3(x3) = 00000000000100000000001000010000

Bloom filter = 01000010000100100100001000010000

False Positive Probability: In membership query ap-
plication, false positive probability is the probability of
an element(like xi in figure above) not belonging to the
the set but being mapped to positions in the bloom filter
that are already filled with 1. For a bloom filter with
desired false positive rate p, number of elements inserted
E, and optimal number of hash functions, the array size
must fulfill m = −E ln p

(ln 2)2 .

III. SIGNATURE SCHEME

We describe three phases of our signature scheme; key
generation & system setup, signing and verification for
signing an l bit message M . We also define the security

in digital signatures and provide a model to analyze the
security of the proposed scheme.

A. Key Generation and System Setup

An optimal n-uniform 1-CFF(E, B) is created, with
parameters E and n such that:

(
E
n

)
≥ 2l. The set of

randomly chosen elements X = {x1, x2, · · · , xE} form
the secret signing keys. These keys are mapped by the
BF store function to the corresponding bloom filter and
form the public verification key, PK = BF (X).

B. Signing Messages

We assume there is a bijection that maps the message
M, to the M th subset in our 1-CFF(E,B) denoted by BM .
To sign a message M using SK, the n-subset BM ∈ B
is computed as {xi1 , xi2 , · · · , xin} and revealed. Hence,
the signature is: σ = {xi1 , xi2 , · · · , xin}.

C. Signature Verification

Given (M,σ, PK) as input, to verify σ’s validity
for M using PK, the verifier confirms whether all the
elements in the set σ = {xi1 , xi2 , · · · , xin} match the
given public key, PK. In other words verification outputs
1 if and only if BF check’s output is 1 for all xi’s in σ.

IV. PERFORMANCE EVALUATION

We evaluate the scheme in time and space complexity
as well as providing comparisons in concrete parameters.

A. Time Complexity

Time complexity is measured in 3 signature’s phases.
Key generation:In the generation time, a set of e random
numbers, X = {x1, x2, · · · , xE}, is generated and
BF store maps each of them to the corresponding bloom
filter to form the public key PK = BF (X). So, the time
complexity is E BF store calculations, each BF store
requires k hash function computations.
Signing: Signing a message M is revealing the secrets
in BM , i.e. σ = {xi1 , xi2 , · · · , xin}, therefore it imposes
no time complexity to the signature scheme.
Verification: During verification, the verifier applies
BF check to all secret keys in the given signature,
σ = {xi1 , xi2 , · · · , xin}, to check if they are valid
members of the public key PK = BF (X), where:
X = {x1, x2, · · · , xE} . So, the complexity is n
BF check, while each BF check requires k hash function
computations.

B. Space Complexity

Space complexity of the scheme is calculated in terms
of secret key size, public key size, and the signature size.
Secret Key Size: As a set of E secret keys is used for
a message of size l, the secret key size is then E times
the secret key size, E × s bits.
Public Key Size: The public verification key is the



Figure 2. Comparison of the proposed signature and other(form [5]) schemes

Bloom filter used in the scheme, it is of size m bits.
Signature Size: Signature is a subset of secret signing
keys that is revealed to authenticate a message. while
the system uses n-uniform 1-CFF, n secrets are used to
sign each message. Hence, signature size is n× s bits.

C. Concrete Parameters & Comparison

We select parameters to provide security level of
s = 112 bits for signing messages of size l = 224
bits, to use SHA-224 as a suitable collision-resistant
hash function for digital signatures. To sign 224-bit
messages, we need a 1-CFF’s with total number of
E = 229 secret(and public) keys with subsets of size
n = 107. Since:

(
229
107

)
≥ 2224, the 1-CFF enables

us to sign all messages of length 224. Table above
compares the proposed scheme with four other signature
schemes; BC[1] W-OTS[8], ZS[13], vHP[3]. The scheme
of van Heyst et al.[3] (vHP) essentially provides the best
balanced performance using DLP. Zaverucha et al. [13]
provide the shortest signatures using only DLP, but on
the expense of much slower key generation phase and
longer public-keys. Neither of the two is post-quantum.
For our Bloom filter based scheme, we have to determine
the filter parameters. As stated in our security analysis,
the false positive probability of the filter should be less
than 2−s. To support that, we set m = 37000 for
Bloom filter size and k = 112 for the number of hash
functions.Our scheme provides signatures of 11,984bits
(1.46KB), which is the shortest among all schemes based
on general one-way functions, while keeping the similar
time efficiency. Our signing is faster than W-OTS, as it
does not require hash calculations. Our PK is better than
BC, but not W-OTS. However, the public key size is not
a main concern and can be reduced using a standard
technique. Comparing with DLP-based schemes, our
scheme has much better time complexity, but longer
signatures. The ZS signature size is short; however, the
key generation time takes 458 exponentiations.

V. CONCLUSION

In this paper we introduced a one time signature
scheme that improves the hash-based OTS. The per-
formance enhancement comes from using Bloom fil-

ter as the one way function embedded in the OTS
scheme instead of hash functions. This change targets
the main concern in hash-based OTS, which is memory
requirements, while keeping the scheme quantum-safe.
The proposed scheme reduces both the signature and
the public verification key size in comparison with the
original hash-based OTS.
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