
Information-Flow Control with Fading Labels
Andrew Bedford

Université Laval, Canada
andrew.bedford.1@ulaval.ca

Abstract—Information-flow control mechanisms gen-
erally invest the same amount of resources to protect
information of varying importance. In this paper, we
introduce the concept of fading labels. Fading labels are
security labels that stop propagating their taint after a
fixed amount of uses. Their use allows mechanisms to
spend more resources on more important information.

I. Introduction
Information-flow control mechanisms are mechanisms

that enforce information-flow policies (e.g., information
from a top secret file should not be sent over the network).
This is usually done by associating sensitive information
with a label, which is then propagated whenever the
information is used; a process called tainting.

These mechanisms, be they static [11], dynamic [2] or
hybrid [3], generally invest the same amount of resources
to protect information of varying importance. However, in
systems where ressources are limited such as smartphones
and tablets, it may be more appropriate to spend more
resources to protect information that is more important
(e.g., passwords), and less resources to protect information
that is less important (e.g., current location).

For this reason, we introduce in this paper the concept
of fading labels. They are labels whose taint stops propa-
gating after a fixed amount of uses.

Contributions:
• We introduce the concept of fading labels and a re-

laxed version of non-interference called depth-limited
non-interference in Section II.

• We discuss their advantages, disadvantages and pos-
sible variations in Section III.

II. Fading Labels
To illustrate the concept, consider the program of

Listing 1.
read value from privateFile;
w := 0;
x := value + 1;
x' := value + 2;
y := x mod 3;
z := y * 4;
write z to publicFile

Listing 1.

Normally, variable value and all of its derivatives (i.e.,
variables x, x', y, z) would be tainted with privateFile
’s label. This approach leads to the tainting of increasingly

large portions of programs over time; a problem known as
taint creep.

The more a program is tainted, the more resources will
be needed by the mechanism. This is especially true if the
mechanism needs to perform additional computations to
prevent leaks through covert channels, such as calling a
termination oracle to prevent progress leaks [7] or execut-
ing dummy operations to prevent timing leaks [1]. Hence,
in order to reduce the amount of resources required, we
chose to reduce the number of tainted variables. So that
the security of sensitive information is not compromised
too much, we chose to do so by limiting the depth at
which a taint is propagated. For example, in Listing 1,
variable z is derived from y, which is derived from x,
which is derived from value (illustrated in Fig. 1). For
this reason, relative to value, x is at depth 1, y is at depth
2 where privateFile’s label stops being propagated, and
z is at depth 3. The idea is to parametrize mechanisms
so that labels associated to important information are
propagated more deeply than those associated to less
important information.

For our purposes, we assume that the levels of informa-
tion are organized in a finite lattice (L,⊑) which contains
at least two elements: L for the bottom of the lattice
(least important) and H for the top of the lattice (most
important), i.e. ∀l ∈ L, L ⊑ l ∧ l ⊑ H. To each level
l ∈ L is assigned an integer maxDepth(l) representing the
maximum propagation depth. Note that alternatively, the
maximum propagation depth can be associated to channels
of information rather than their level. So there could be a
channel of level H and depth 5, and another one of depth
500.

We can formally define fading labels as sets of couples
where the first element is the level of information and the
second element is a counter that keeps track of the depth:

(fading labels) ℓ ::= P(L × N)

Each time the label is propagated, either due to a data
dependence or control dependence, its counters are decre-
mented. Once a counter reaches 0 (e.g., y in Fig. 1), then
the couple is removed from the set. We use sets because
in our context, a variable can be tainted with more than
one element of the lattice. For example, if we have an
assignment a := b + c where b:{(H, 8)} and c:{(M ,10)},
then a:{(H,7),(M ,9)}. Note that if c:{(M ,7)}, then
a:{(H,7)} because M ⊑ H and the remaining depth of H
is greater or equal than M ’s.



Fig. 1. PDG-like representation of Listing 1

Depth-Limited Non-interference

Non-interference [4] is the security policy that is en-
forced by most information-flow mechanisms. Intuitively,
it states that private information should not interfere
with the publicly observable behavior of a program. More
formally, it states that there should not be information-
flows from inputs of level l1 to outputs of level l2 if l1 ̸⊑ l2.
Since fading labels stops propagating after a certain point
to reduce resource-usage, mechanisms that use them do
not necessarily satisfy non-interference. What they do
satisfy is a relaxed version of non-interference that we call
depth-limited non-interference.

In order to define depth-limited non-interference, we
use program dependence graphs (PDG). They are a visual
representation of information flows that can occur in a
program. Each node represents a program statement or
expression and there are two kinds of edges:

• Data dependence (a.k.a. explicit flows): An edge
x −→ y means that statement x assigns a variable
that is used in statement y.

• Control dependence (a.k.a. implicit flows): An edge
x 99K y means that the execution of y depends of the
value of expression x (typically the condition of an
if/while command).

If there is a path from node x to node y, it means that
information can flow from x to y. So if there are no paths
from private inputs to public outputs, then the program
is non-interferent. Consequently, PDG-based mechanisms
such as Hammer et al. [5] enforce non-interference by
searching for such paths, no matter their length. This
would reveal that the program in Listing 1 does not satisfy

non-interference as there is a path from value (private
input) to z (public output).

Depth-limited non-interference is essentially the same
thing, but the verified paths have a maximum length. For
example, since the maximum depth of H-level information
is set to 2 in Fig. 1, the program would satisfy depth-
limited non-interference.

III. Discussion

A. Advantages
The use of fading labels increases the usability of

information-flow control mechanisms by lowering the
amount of resources needed and by increasing its permis-
siveness. It provides users with an easy way to parametrize
mechanisms so that more resources are used to track
important information and less resources are used to track
less important information. Furthermore, since fading la-
bels are similar to regular labels, they can easily be
integrated into existing mechanisms.

A similar effect could be attained using multiple en-
forcement mechanisms and regular labels: there could be
one mechanism per level of information and their precision
could vary in function of this level. However, compared
to fading labels, the simultaneous use of multiple enforce-
ment mechanisms would introduce a significant runtime
overhead.

Depth-limited non-interference is useful in scenarios
where it is too costly to verify that a program satisfies non-
interference and where an approximation is sufficient. For
example, verifying concurrent programs is costly because
every possible interleaving of events has to be consid-
ered. Depth-limited non-interference restricts the length of
information-flow paths that have to be checked and hence
reduces the cost of verification.

B. Disadvantages
While the use of fading labels increases the usability

of information-flow control mechanisms, it also reduces
their security; leaks of sensitive information may occur.
In particular, a malicious application that is aware that
it is being monitored by a mechanism which uses fading-
labels could circumvent the mechanism and leak sensitive
information (e.g., by inserting long dependence paths).

Another disadvantage is that there is no easy way
to determine the “right” amount of uses after which a
label should stop being propagated; it depends on the
application being analyzed and the user’s needs. Static
analysis could be used to suggest values that help reduce
the overhead introduced by the mechanism, while keep-
ing the number of leaks to a minimum. This could be
done by calculating the percentage of input variables that
are tracked end-to-end. That is, the percentage of input
variables of level ℓ for which there are no paths of length
greater than maxDepth(ℓ) that lead to an output variable
of lower level.



C. Variations
Here are a few interesting variations of the idea.
1) Time-Based Fading Labels: Instead of parametrizing

fading labels with taint depths, timespans could be used
so that the propagation stops after a certain amount of
time. While this would not exactly respect depth-limited
non-interference, it could be more intuitive to some users.

2) Usage-Based Fading Labels: Based on the observa-
tion that the further a variable is from the original source
of sensitive information, the more likely it is that it will
have lost information, our proposal in Section II decreases
the counter each time the taint is propagated. However,
this observation may not always be true. A safer alterna-
tive would be to decrease the counter only when non in-
versible operations are used (e.g., modulo operation). That
is, only when we are sure that information is lost. This idea
is closely related to the work in quantification [10], which
aims at quantifying how much information is leaked by a
program or output.

3) Probabilistic Fading Labels: Fading labels as defined
in Section II stop propagating their taints once a cer-
tain depth has been reached. Another idea would be to
parametrize fading labels with probabilities so that low-
level variables have a low probability of propagating their
taint, and high-level variables have a high probability.

D. Related Work
As far as we know, we are the first to propose a way

to vary the amount of resources used by enforcement
mechanisms by level of information. That being said, to
reduce the amount of resources, fading labels automati-
cally downgrades labels, a process known as declassifica-
tion. Declassification is widely studied in language-based
security [9]. It is typically used as a way to safely release
sensitive information.

Sabelfeld et al. [8] introduces a notion called delim-
ited release which stipulates that information may only
be declassified via declassify commands which must be
manually inserted into the code. Fading labels on the other
hand automatically declassify information.

Kozyri et al. [6] propose to use automatons as labels.
The automaton’s state determines how the content of a
variable can be used. Fading labels could be seen as a
specific (and simpler) instance of this.

E. Future Work
We intend to use fading labels in an information-flow

mechanism for Android. This will allow us to see how the
idea holds in realistic scenarios. More specifically, we will
empirically evaluate the performance of mechanisms with
and without fading labels.

We also intend to further formalize the approach and
develop a static analysis tool that can help users choose
the maximum depths.

References
[1] J. Agat, “Transforming out timing leaks,” in POPL

2000, Proceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Boston,
Massachusetts, USA, January 19-21, 2000, 2000, pp. 40–53.
[Online]. Available: http://doi.acm.org/10.1145/325694.325702

[2] T. H. Austin and C. Flanagan, “Efficient purely-dynamic
information flow analysis,” in Proceedings of the 2009 Workshop
on Programming Languages and Analysis for Security, PLAS
2009, Dublin, Ireland, 15-21 June, 2009, 2009, pp. 113–
124. [Online]. Available: http://doi.acm.org/10.1145/1554339.
1554353

[3] A. Bedford, J. Desharnais, T. G. Godonou, and
N. Tawbi, “Enforcing information flow by combining
static and dynamic analysis,” in Foundations and Practice
of Security - 6th International Symposium, FPS 2013,
La Rochelle, France, October 21-22, 2013, Revised
Selected Papers, 2013, pp. 83–101. [Online]. Available:
https://doi.org/10.1007/978-3-319-05302-8_6

[4] J. A. Goguen and J. Meseguer, “Security policies and security
models,” in 1982 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, April 26-28, 1982, 1982, pp. 11–20.
[Online]. Available: https://doi.org/10.1109/SP.1982.10014

[5] C. Hammer and G. Snelting, “Flow-sensitive, context-sensitive,
and object-sensitive information flow control based on program
dependence graphs,” Int. J. Inf. Sec., vol. 8, no. 6, pp.
399–422, 2009. [Online]. Available: http://dx.doi.org/10.1007/
s10207-009-0086-1

[6] E. Kozyri, O. Arden, A. C. Myers, and F. B. Schneider,
“Jrif: Reactive information flow control for java,” Tech.
Rep., 2016. [Online]. Available: https://ecommons.cornell.edu/
handle/1813/41194

[7] S. Moore, A. Askarov, and S. Chong, “Precise enforcement
of progress-sensitive security,” in the ACM Conference on
Computer and Communications Security, CCS’12, Raleigh,
NC, USA, October 16-18, 2012, 2012, pp. 881–893. [Online].
Available: http://doi.acm.org/10.1145/2382196.2382289

[8] A. Sabelfeld and A. C. Myers, “A model for delimited informa-
tion release,” in ISSS, ser. Lecture Notes in Computer Science,
vol. 3233. Springer, 2003, pp. 174–191.

[9] A. Sabelfeld and D. Sands, “Declassification: Dimensions and
principles,” Journal of Computer Security, vol. 17, no. 5, pp.
517–548, 2009. [Online]. Available: http://dx.doi.org/10.3233/
JCS-2009-0352

[10] G. Smith, “Recent developments in quantitative information
flow (invited tutorial),” in 30th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, 2015, pp. 23–31. [Online]. Available: http:
//dx.doi.org/10.1109/LICS.2015.13

[11] D. M. Volpano, C. E. Irvine, and G. Smith, “A sound
type system for secure flow analysis,” Journal of Computer
Security, vol. 4, no. 2/3, pp. 167–188, 1996. [Online]. Available:
http://dx.doi.org/10.3233/JCS-1996-42-304

http://doi.acm.org/10.1145/325694.325702
http://doi.acm.org/10.1145/1554339.1554353
http://doi.acm.org/10.1145/1554339.1554353
https://doi.org/10.1007/978-3-319-05302-8_6
https://doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1007/s10207-009-0086-1
http://dx.doi.org/10.1007/s10207-009-0086-1
https://ecommons.cornell.edu/handle/1813/41194
https://ecommons.cornell.edu/handle/1813/41194
http://doi.acm.org/10.1145/2382196.2382289
http://dx.doi.org/10.3233/JCS-2009-0352
http://dx.doi.org/10.3233/JCS-2009-0352
http://dx.doi.org/10.1109/LICS.2015.13
http://dx.doi.org/10.1109/LICS.2015.13
http://dx.doi.org/10.3233/JCS-1996-42-304

	Introduction
	Fading Labels
	Discussion
	Advantages
	Disadvantages
	Variations
	Time-Based Fading Labels
	Usage-Based Fading Labels
	Probabilistic Fading Labels

	Related Work
	Future Work

	References

